Final Report
Best Practices in Arterial Speed Management

Prepared for:
City of Pasadena

October 22, 2009
Table of Contents

1. Recommendations ... 3
 1.1 Streets with greater than 20,000 vehicles per day ... 3
 1.2 Streets with fewer than 20,000 vehicles per day ... 4
2. Background and Purpose of Study ... 5
3. Definition of Speed Management ... 5
4. Literature Review ... 6
 4.1 Roundabouts ... 6
 4.2 Road Diets ... 7
 4.3 Intersection Design ... 7
 4.4 Pavement Markings/Striping .. 8
 4.5 Speed Humps and Speed Bumps ... 9
 4.6 Traffic Signal Techniques ... 10
 4.7 Shared Space ... 10
 4.8 Feedback and Enforcement Techniques .. 10
 4.9 Deflection .. 11
 4.10 Other Techniques ... 11
 4.11 Conclusion ... 12
5. Best Practices ... 12
 5.1 Effective Techniques .. 12
 5.2 State of the Art Techniques .. 13
 5.3 Important Considerations ... 13
 5.4 Expert Interviews ... 14
6. Agency Interviews .. 17

Appendix A – References .. 22
Appendix B – Interviews .. 30
Appendix C – Interview Questions ... 31
1. **Recommendations**

This report presents recommendations to update the City of Pasadena’s traffic investigation process or Neighborhood Traffic Management Plan (NTMP) to include speed management measures for major streets. Major streets are defined as major collectors and arterials.

Many of the conventional residential street speed reduction measures presented in the City’s Neighborhood Traffic Management Program Community Handbook are not appropriate for major streets. Measures such as speed humps, traffic circles, and angled parking are typically not used on major streets because they affect emergency vehicle response time, large vehicle mobility, and can affect the street’s capacity. However, the handbook does identify some measures that have application on major streets including focused police enforcement, radar feedback signs, speed tables (raised intersections or crosswalks), pavement markings, roundabouts (on appropriate streets), and lane narrowings.

The recommendations in this report are based on the results of a literature review and interviews with experts and public agencies identifying a number of speed management techniques that can be implemented on major streets. This report recommends a tiered approach to speed management measures using average daily traffic volumes as criteria:

- Streets with greater than 20,000 vehicles per day
- Streets with fewer than 20,000 vehicles per day

1.1 **Streets with greater than 20,000 vehicles per day**

Roadways with greater than 20,000 vehicles per day need to maintain traffic capacity. Therefore, measures that significantly reduce capacity are not appropriate on these streets because they might divert traffic to parallel streets where an increase in traffic is undesirable. Streets with greater than 20,000 vehicles per day will typically consist of two or more travel lanes in each direction, and have traffic signals at major cross streets. The most effective speed management measures (which may be combined) for this tier of street are listed below.

- **Signal coordination** to a target speed of at least the posted speed limit.
- **Reduce travel lane width** to a maximum of 11-feet, and turn lanes may be reduced to 10-feet, as appropriate.
- **Permanent speed feedback signs** flashing “Slow Down” message when speed exceeds a preset limit (most effective when coupled with enforcement). Signs should be solar powered with ability to move from location to location.
- **Speed Enforcement Corridors** with regular targeted speed enforcement combined with a public awareness program.
- **Multi-lane urban roundabouts** at appropriate intersections. Approach and departure lanes can be designed for 15-20 mph. Most effective if used in multiple locations within the same corridor. Multi-lane roundabouts may not be desirable at intersections with high pedestrian or bicycle volumes.
• **Pedestrian improvements at intersections** including a combination of curb bulbouts, high visibility crosswalks, and smaller turning radii to decrease speeds of turning vehicles.

• Long-term speed management involves **transitioning suburban streets into urban thoroughfares**. Urban contexts, and associated multimodal activity, tend to lower speeds. Elements of urban thoroughfares include buildings built to the edge of the street with ground floor uses that generate pedestrian activity, street trees, pedestrian-scaled intersection spacing, and on-street parking.

1.2 Streets with fewer than 20,000 vehicles per day

Streets with average daily traffic volumes between 10,000 and 20,000 vehicles per day allow more flexibility in the types of speed management measures that can be implemented. Streets with this level of traffic volume usually do not require the same level of capacity as a higher volume street, and are frequently overbuilt. These streets typically are four lanes wide (two lanes in each direction), but may only need to be one lane in each direction. The most effective speed management measures (which may be combined) for this tier of street are listed below.

• **Four to three lane conversion (Road Diet)**, particularly effective on four lane undivided streets. This measure provides one travel lane in each direction and a center median or turn lane. Streets with average daily traffic volumes of 15,000 to 18,000 can usually be accommodated with this configuration. Streets approaching 20,000 vehicles per day may also be accommodated by this configuration, but a capacity analysis is required. The additional width gained with road diets can be used for multiple improvements to the street depending on need such as medians, bike lanes, wider sidewalks and landscaping, on street parking, or some combination of each. Road diets also allow further pedestrian improvements at intersections such as curb bulbouts or pedestrian refuges.

• **Single-lane urban roundabouts** at appropriate intersections. A combination of road diet and single-lane roundabouts along a corridor is one of the most effective combinations of major street speed management measures.

• **Signal coordination** to a target speed of at least the posted speed limit.

• **Reduce travel lane width** to a maximum of 11-feet, and turn lanes may be reduced to 10-feet, as appropriate.

• Permanent **speed feedback signs** flashing "Slow Down" message when speed exceeds a preset limit (most effective when coupled with enforcement). Signs should be solar powered with the ability to move from location to location.

• **Speed Enforcement Corridors** with regular, targeted speed enforcement combined with a public awareness program.

• Long-term speed management involves **transitioning suburban streets into urban thoroughfares** (see Section 1.1).

• **Raised intersections** primarily at gateways to residential or commercial districts (most effective if used in multiple locations delineating speed management areas) may be used on streets with posted speed limits of 30 mph or less and traffic volumes between 10,000 and 15,000 vehicles per day.

While each individual recommendation can be effective, a combination of measures may have a greater success of reducing travel speeds on arterials and major collectors.
Speed management measures should be implemented throughout and across jurisdictions to have the most impact combined with appropriate enforcement.

2. Background and Purpose of Study

The City of Pasadena has commissioned this study to examine best practices in managing speed on the City’s arterial and collector streets. This study identifies speed management strategies and measures being used worldwide, but mostly within the United States. The emphasis is on applications employed in California. The impetus for this study is recent regulatory changes in California that affect how public agencies evaluate and establish speed limits.

In California, speeds are determined by methodology set forth in the California Manual of Uniform Traffic Control Devices (MUTCD). 1

The current MUTCD determines speed by using the 85th percentile speed rounded to the nearest 5 mph increment. The posted speed limit may be lowered an additional 5 mph with sufficient documentation of unapparent conditions and consistent with the California Vehicle Code section 22358.5 cited above. Other factors for considerations include incidents and causes of collisions, residential density, and pedestrian and bicycle safety.

This study identifies current practices in managing traffic speeds on streets typically classified as arterials or collectors. The study design includes:

- Review of the literature on speed management methods and effectiveness,
- Interviews of experts in the field of traffic operations and speed management, and
- Interviews of municipalities that have employed speed management methods.

3. Definition of Speed Management

Speed management is a multi-disciplinary approach to controlling speeds using enforcement, design, and technology applications. Speed management should reflect the needs of multiple modes and respond to the street’s surroundings. The benefits of speed management are safer roads with fewer incidents and less severe injuries.

Speed management techniques can be used regardless of the posted speed. While “traffic calming” is a type of speed management usually used on local residential streets, speed management can be used on all types of streets, including arterials or state highways, for safety benefits, to provide a more consistent speed throughout a corridor, or to decrease the number of speed violators.

Speed management methods may be either passive or active. Passive methods are devices or designs that provide feedback to the motorist about their speed, or

1 2008 California Vehicle Code section 22358.5
designs in which the motorist perceives the need for a lower speed. Active methods are physical devices or technologies that force drivers to slow or stop.

4. Literature Review

The literature review focused on speed management techniques being used on collectors or arterials in urban or suburban locations. There is an abundance of literature on traffic calming for residential streets, but most of the methods and devices are not applicable to the unique characteristics of arterials. Further, the quantitative assessment of techniques in the literature is based on data collection specific to residential streets and cannot be used to determine the effectiveness of these methods on arterials.

Arterial streets are designed to move traffic longer distances efficiently through a corridor, often at relatively high speeds. Speed management techniques that work well on a slower, less-traveled residential street, are not as effective, or not appropriate, on high volume, higher speed corridors. Arterial streets are primary response routes for emergency vehicles which need to travel at high speeds, or are designated truck routes. Therefore, methods that force lower speeds, such as vertical displacement methods (i.e., speed humps) are not appropriate for these streets.

Speed management literature often focuses on safety benefits, with fewer studies on quantitative speed changes. Some of the literature comes from European countries because they are often more advanced in speed management and have more extreme visions of the use of the roadway. The literature review is divided into the common types of techniques currently employed in the United States and found to be effective on arterials.

4.1 Roundabouts

Roundabouts are an intersection traffic control technique in which traffic moves one way around the intersection. They have safety benefits because they decrease the number of conflict points by removing left turns. They also lower speeds approaching and within the roundabout based on the angle of deflection entering the roundabout and the radius of the roadway’s curvature. Smaller roundabouts with different merging operations or stop control are called traffic circles. Traffic circles can be used mid-block to slow traffic, but are usually used on low volume residential streets. Roundabouts may require pedestrians to cross longer distances and be aware of traffic merging in and out of the intersection. Bicyclists can use the pedestrian approaches to the roundabout or can mix with the general flow of traffic. In larger, multi-lane roundabouts, a striped or separated bicycle facility can be designed.

According to the NCHRP Report 613, roundabouts improve bicycle safety by slowing down cars to match bicycle speeds and reduce turning movement conflicts between bicycles and cars, although these safety benefits are less than the safety benefits to cars and pedestrians. There are numerous studies on roundabouts and safety improvements. One study by the Maryland State Highway Administration found that a roundabout at the intersection of two state routes decreased crash incidents by 70%, injury accidents decreased by 90%, and there was less delay than if a traffic
signal had been used. Roundabouts are widely accepted as a speed reduction technique, often used on high speed roadways. Studies have shown that entry speeds for roundabouts are between 13 and 17 mph for the 85th percentile speed. Roundabouts have also been shown to “reduce mid-block speed by at least 10%” and reduce travel speeds within the intersection to approximately 15 mph.

4.2 Road Diets

A road diet is a technique that narrows the effective width of the roadway for cars. This may mean removing lanes or narrowing the individual travel lanes, increasing the sidewalk width, or adding a median. It may also mean adding left turn lanes, dedicated transit lanes, on-street parking, or some combination of each. A common application of road diet is the conversion of a four-lane undivided street into a three-lane street comprised of one travel lane in each direction and a center turn lane. This application is often used to provide bike lanes and/or on-street parking. Road diets are a very common arterial speed management technique and often cited as the most effective. There is a substantial collection of before and after studies for road diet applications. They have been used effectively throughout the world and are frequently used in areas with high pedestrian and bicycle use. In Victoria, British Columbia a road diet was used for a 4-lane road (2 lanes in each direction) with an AADT of 24,000. The road diet consisted of left turn lanes, pedestrian refuge medians, and full-time on-street parking. The volumes on this road did not change, and traffic did not divert to other roads, but speeds were decreased by 5km/hour (3 mph) and incidents decreased by 17 per year.

4.3 Intersection Design

Intersections are an important location for speed management because of the potential for conflicts with cars, pedestrians, and bicyclists and the number of possible movements. Intersections can be designed with raised intersections or crosswalks, pedestrian bulbouts, offset lanes, monument features, and smaller turning radii. These techniques work by narrowing the street's cross-section or providing visual cues to motorists to travel slower, while benefiting pedestrians and bicyclists through shorter crossings and higher visibility. Intersection design primarily has an impact on the speed of vehicles approaching and traveling through an intersection, and can improve pedestrian accessibility. Raised intersections are level with the sidewalk and are often accomplished with textured pavers or colored and stamped concrete to create a visual cue. In a sample of three sites, raised

2 “Handbook of Speed Management Techniques” By Angelia Parham and Kay Fitzpatrick, Texas Transportation Institute, September 1998.

3 “NCHRP Report 613 Guidelines for Selection of Speed Reduction Treatments at High-Speed Intersections” National Cooperative Highway Research Program Pg 46.

5 “Traffic Calming on Arterial Roadways” by Michael Skene, on ITE’s website.
intersections used alone decreased the 85th percentile speed by 1%. T-intersections can be realigned so the through movement is deflected and becomes a turning movement as is shown in Figure 1. According to traffic calming.org and supported by the literature review, no data has been documented to show the effectiveness of realigned intersections. The combination of monuments, landscaping, and pedestrian bulbouts has limited data for measuring their effectiveness at intersections, but studies have been done on the individual components along residential streets. Studies show that changes in the character of the road have decreased speeds. For example, on two-lane rural highways there was a 4 mph decrease in the areas of the road that had trees, compared to areas without trees. Pedestrian bulbouts, extending the curb into the intersection to decrease pedestrian crossing distance and to narrow the roadway, have been shown to reduce average speed by 13%.

Figure 1. Realigned T-intersection

4.4 Pavement Markings/Striping

Pavement markings and striping can be used for speed management by creating an illusion of deflection or narrower lanes or by changing the environment to make drivers more aware of their speed. One type of pavement marking is a series of transverse lines that gradually get closer together to give the illusion that drivers are going faster than they really are, causing them to slow down. This is frequently used when approaching an intersection, crosswalk or merge point where drivers will need to slow down in advance of the decision point. The same theory holds for chevron markings across a lane. These pavement markings are most effective when used in

7 NCHRP 124 – Guidelines for Speed Reduction Treatments at High-Speed Intersections. Pg 2-48
combination with a change in pavement surface, such as rumble strips or pavement textures (cobblestone, texturizing). Striping can also be used to narrow lanes for a less expensive road diet or to mark the actual speed limit on the pavement to make drivers aware of the speed limit. A study on pavement markings used for speed management found that longitudinal markings were not effective when used alone, but transverse pavement markings were. Three case studies were used for before and after studies on transverse pavement markings – an exit ramp in New York, a rural road in Mississippi with a speed limit of 45 mph, and a rural road in Texas with a 60 mph speed limit (45 mph on curves). The New York case study found a 4 mph reduction in speed, the Mississippi case found a long-term reduction of nearly 5 mph, and the Texas case study found no statistical difference.³

4.5 Speed Humps and Speed Bumps

Speed humps and speed bumps are the most common traffic calming measure used on residential streets, but on higher speed roads (over 30 mph) they cause significant driver discomfort and “jolt the vehicle’s suspension” and are not recommended.⁴ Speed tables or platforms (raised crosswalks or intersections with a flat top) are vertical deflection techniques that are applicable on arterials because of their geometric design and the smoother transition at higher speeds. These are not recommended for speeds over 45 mph and are generally for lower speed roads.⁵ They are also not recommended in areas where the vehicle will encounter them at a high speed; instead, they can be used in conjunction with curves, stop signs or signals to prevent acceleration after slowing or stopping.⁶ This technique can reduce traffic volumes and divert traffic to parallel streets.⁷ There is limited data on the effectiveness of speed tables for arterials with speeds greater than 45 mph. On streets with speeds less than 45 mph, speed tables have been shown to be an effective speed reduction technique. In Gwinnett County, Georgia, 43 speed tables were installed, resulting in an average speed reduction of 9 mph.⁸ A sample of data

⁴ “Handbook of Speed Management Techniques” By Angelia Parham and Kay Fitzpatrick, Texas Transportation Institute, September 1998.

⁶ NCHRP Report 613 – Guidelines for Selection of Speed Reduction Treatments at High-Speed Intersections, NCHRP 2008 Pg 53

⁷ “Handbook of Speed Management Techniques” By Angelia Parham and Kay Fitzpatrick, Texas Transportation Institute, September 1998.

⁸ NCHRP Report 613 – Guidelines for Selection of Speed Reduction Treatments at High-Speed Intersections, NCHRP 2008 Pg 54
on speed table effectiveness found an average of 18% decrease in 85th percentile speeds.

4.6 Traffic Signal Techniques

Traffic signals can be used as speed management techniques in multiple ways. Signals can be synchronized to give a progressive green band for cars traveling at a specified speed. Synchronization can be combined with signs that inform drivers that the signals are timed for a specific speed, as an education measure. Vehicles traveling faster than the coordinated speed will have to stop more frequently. In Portland, Oregon, signals within the downtown area are coordinated to speeds of 12 to 18 mph. In France, synchronizing signals to create a “green wave” has been shown to reduce the average speed 10 to 20% and a 15 to 25% reduction in the 85th percentile speed. This technique is particularly effective on one-way streets, but can also be used effectively on two-way streets. There are also “rest on red” signals where a signal is red until a car drives over a detector placed at a pre-set distance from the intersection. This requires a car to slow on the approach to the intersection since the light is red, but does not require the car to stop because the light changes before the car comes to a complete stop. Some municipalities have experimented with speed activated traffic signals, where vehicles approaching an intersection at high speeds trigger a red light.

4.7 Shared Space

Shared space is a common technique used in Europe. A shared space can take a variety of forms, but in general the street is envisioned as a public space with no one mode having priority over another. Pedestrians are free to cross anywhere. Often, there are no pavement markings, requiring drivers to be attentive and navigate around other vehicles, pedestrians, and bicycles. There may be trees or street furniture in the “road” that act as a deflection. Shared space evolved from the Dutch “woonerven” concept of giving pedestrians priority over other modes. In the Netherlands, the number of incidents on the shared space has decreased by 95%.

4.8 Feedback and Enforcement Techniques

Feedback and enforcement techniques include speed trailers, flashing beacons, flashing speed limit signs, or police enforcement. These techniques are designed to make motorists aware that they are exceeding the speed limit by changing something noticeable in their environment, such as a flashing sign. A study in Bryan, Texas used speed trailers to reduce speeds, but they were not found to have a lasting impact. Another study in Riverside, California maintained lower speeds by up

to 4 mph a week after a speed trailer was removed.\(^\text{18}\) Using speed monitoring displays in school zones has shown to decrease the number of speed violators and result in a 17% reduction in speeds.\(^\text{19}\) One of the most common arterial speed management techniques in the United States is the radar speed feedback sign, and many municipalities provide permanent installations of these devices. These devices have evolved from simple displays of speed to devices that display speed, speed limit, and flash “slow down” when vehicles exceed limits. Police enforcement of speed still remains a fundamental element of arterial speed management.

4.9 Deflection

Deflection techniques used for speed management require the car to redirect from its travel path to avoid gaining speed on a straight roadway. Chicanes and road narrowing medians are two types of deflection techniques. The deflection measures are designed to be easily navigated if the vehicle is driving at the proper speed. These techniques may be a challenge for emergency or transit vehicles. They have proven effective in Ontario, Canada where speed control medians were implemented on Mohawk Road. The mean speed decreased by 9% and the percentage of vehicles exceeding the speed limit was reduced by 20%.\(^\text{20}\)

4.10 Other Techniques

Other speed management techniques are mentioned within the literature, but are not implemented frequently and lack evidence to support their effectiveness. A “neighborhood pace car program” is one technique where members of the community pledge to always travel the speed limit to set the pace for drivers following them. Another technique is to use tactile surfaces (such as rumble strips) to deliberately increase road noise and vehicle vibration to warn drivers to slow. There is the concept of creating visual cues that notify motorists they are traveling in urbanized places where pedestrians and bicycles may be encountered. This includes street enclosures (buildings fronting streets, tree canopies, on-street parking) and other urbanizing features within and outside the public right-of-way. Many agencies prohibit the use of vertical displacement devices on arterial streets (i.e., speed humps), but indicated that they would employ less obtrusive measures such as gateway treatments, narrowing travel lanes, bulbouts, parking bays, on-street parking, detached sidewalks, bicycle lanes, and textured pavement at pedestrian crossings. These treatments may not significantly decrease traffic speeds on arterial streets, but they address safety concerns and the quality of the experience or sense of place created for pedestrians, bicyclists, and motorists\(^\text{21}\). Variable speed limits are

\(^\text{19}\) “Effectiveness of Speed Monitoring Displays in Speed Reduction in School Zones” by Choulki Lee, Sangsoo Lee, and Bongsoo Choi for TRB Annual Meeting in 2006.

\(^\text{20}\) “Arterial Speed Calming – Mohawk Road Case Study” TRB Circular, EC019 Urban Street Symposium 2000, Gerry Forbes, Synectics Transportation Consultants.

used to respond to varying traffic conditions. Variable speed limits require drivers to slow down in adverse weather conditions or in advance of an incident or congestion point. These potential speed management techniques are not widely used but may be as effective as other techniques.

4.11 Conclusion

Speed management techniques can generally be divided into two categories, active (physical) and passive. Active techniques are ones that require a physical design change, such as roundabouts or raised medians. Passive techniques include signage, signalization, and enforcement techniques. Active techniques are generally more effective at changing driver behavior, but may be more costly to implement and may not be appropriate on arterial streets. In general, the literature on speed management for arterials is limited and qualitative with most of the literature focusing on residential applications. The literature review focused on individual speed management techniques; however, these measures are more effective when used in combination with multiple techniques over the length of a corridor. The Danish approach to speed management focuses on using active and passive techniques concurrently in what is called a “speed triangle.” The triangle consists of physical measures, enforcement, and education, similar to the American “three E’s of engineering, education, and enforcement” often cited as an approach to neighborhood traffic management. The education piece can be as simple as posting speed limits frequently, or as complex as public education programs. The physical measures that have proven effective in Denmark are roundabouts, speed humps, bicycle lanes, and changes in road surface. These measures have been relatively inexpensive to implement and have shown a 16% reduction in speed. The speed triangle method has been in use for over ten years and is still found to be as effective now as when it was first implemented.

5. Best Practices

Experts in the field provided input on best practices for speed management with an emphasis of techniques that have proven effective on arterials and state of the art techniques that will be the future of speed management. Experts were interviewed from Federal agencies, State Departments of Transportation, local municipalities and major universities. Appendix B has a complete list of the experts that were interviewed.

5.1 Effective Techniques

The most effective speed management techniques are ones that have a long lasting impact. Many techniques work in the short term because the concept is novel. This is true for pavement markings, radar feedback signs, or for visual cue techniques like trees. Enforcement techniques are also only effective in the short-term and must be employed consistently for long term effectiveness. More permanent enforcement techniques like “fake” red light running cameras may work for longer periods, but if people do not receive a negative consequence for running the red light or speeding the effectiveness will wear off.

Roundabouts and road diets were most commonly referenced as having the largest impact, anecdotally. Overall, the experts agree that a combination of techniques
should be used, and that speed management should be implemented corridor-wide (and across jurisdictions) to have the most impact with appropriate enforcement.

5.2 State of the Art Techniques

State of the art techniques in speed management are found primarily in Europe. The concept of shared space has proven effective throughout Europe, but is not used in the United States, and would not likely be applied to arterial streets. These techniques use elements of geometric design and traffic calming that are familiar in the United States, but take it a step further to apply these elements in a way that are not typically used in the United States. For instance, in Switzerland, one speed management application consisted of a typical road diet with a drivable cobblestone median. The drivable median, which is not often seen in the US, can be used for left turns or passing busses. Another application is to have dedicated bicycle lanes and vehicular travel lanes so narrow that cars cannot pass bicyclists. Cars must wait for the bicycles or pass at an intersection. When no bicycle is present, cars may take part of the bicycle lane. This technique works best in areas of high bicycle usage. This technique is considered “state of the art” because the bicycles are given priority in the road and the lane for the cars is striped narrower than typical widths.

The final state of the art technique frequently mentioned was the integration of technology into speed management. The most basic example of this is signal synchronization. The more advanced techniques involve in-vehicle applications. The Vehicle Infrastructure Initiative (VII) also known as Intellidrive sponsored by the Federal Highway Administration (FHWA) is the deployment of advanced technologies to allow vehicles to communicate with each other and the road. The vehicle would be warned of unsafe driving conditions, such as wet pavement, and respond appropriately. The vehicles would keep a safe distance between each other and know if a potential conflict were approaching, like a car driving too fast. This initiative is being rolled out by the federal government and is currently being tested with input from the automotive industry.

5.3 Important Considerations

Speed management is often a multi-disciplinary decision because it requires input from emergency services, engineering, street maintenance departments, landscape architects, and transit service providers. To be most effective, it also requires input from the public as early in the process as possible to get buy-in and to understand how the community functions. Bicycle and pedestrian advocacy groups may also be involved. Speed management also requires knowledge of the existing traffic patterns, both quantitative and qualitative. Quantitative measures of traffic counts, intersection turn movements, and speeds help to determine the existing condition and the need. The public can explain qualitative information that can be just as important. For instance, one street can be used as a cut-through for children from school to a local park. The existing conditions can determine what the need is, what the goal is, and what techniques are appropriate.

Speed management should be examined along corridors and across jurisdictions. It is important for a corridor to have a consistent speed through different jurisdictions if the character remains the same. A consistent speed also reduces speeding in areas where previously speed limits fluctuated, but travelers may not have realized the difference. Speed management should have a maximum distance between “slow”
points to prevent drivers from gaining speed between measures. Often, the intersection is a slow point and also determines the capacity of the street. If speed management techniques are used between intersections, the capacity of the street will likely not change.

5.4 Expert Interviews

Table 1 summarizes the information gained from interviewing national experts on speed management. Experts included researchers, university professors, and key agency staff at the local, state and federal levels. The table identifies the expert’s opinion on the effectiveness of each measure identified and provides additional anecdotal information.

<table>
<thead>
<tr>
<th>Expert</th>
<th>Speed Management Strategy/Measure</th>
<th>Opinion on Effectiveness</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kay Fitzpatrick, Texas Transportation Institute</td>
<td>Speed humps, speed tables</td>
<td>Effective</td>
<td>Not widely used on arterials. Not much public support, particularly from emergency service providers.</td>
</tr>
<tr>
<td></td>
<td>Visually narrowing road</td>
<td></td>
<td>Lack of rigorous data on effectiveness.</td>
</tr>
<tr>
<td></td>
<td>Roundabouts</td>
<td>Effective</td>
<td>Show speed reductions and an increase in safety. Pedestrians, especially blind pedestrians may not prefer over signals.</td>
</tr>
<tr>
<td></td>
<td>Pavement markings</td>
<td>Not Very Effective</td>
<td>Only work for a short-time. Pavement markings have an advantage because they are cost effective.</td>
</tr>
<tr>
<td></td>
<td>Speed feedback signs</td>
<td>Effective</td>
<td>Most effective when coupled with enforcement. Enforcement is the key to all measures.</td>
</tr>
<tr>
<td></td>
<td>Raised crosswalks</td>
<td>Effective</td>
<td>Act as speed tables to slow vehicles, but benefit pedestrians by increasing the visibility of pedestrians.</td>
</tr>
<tr>
<td>Reid Ewing, University of Maryland</td>
<td>Visually narrowing road</td>
<td>Effective</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lateral shifts</td>
<td>Effective</td>
<td>Used frequently in Europe. MUTCD has a formula to calculate shift required on arterials.</td>
</tr>
<tr>
<td></td>
<td>Speed cushions (speed platforms)</td>
<td>Effective</td>
<td>Lowers vehicle speeds, but does not impact emergency vehicles.</td>
</tr>
<tr>
<td></td>
<td>Roundabouts</td>
<td>Effective</td>
<td>20 - 25 mph circulating speeds</td>
</tr>
<tr>
<td>Expert</td>
<td>Speed Management Strategy/Measure</td>
<td>Opinion on Effectiveness</td>
<td>Notes</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---</td>
<td>--------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Frank Quon, Caltrans</td>
<td>Synchronized signals</td>
<td>Very Effective</td>
<td>Used effectively in urban settings to create a progression. Slow point speeds should be 5-10 mph below posted speeds.</td>
</tr>
<tr>
<td></td>
<td>Raised crosswalks combined with neckdowns</td>
<td>Effective</td>
<td>Slow traffic and increase pedestrianization.</td>
</tr>
<tr>
<td></td>
<td>Adaptive signal control</td>
<td>Effective</td>
<td>Signals timed for a specific speed. The speed is posted for motorists to know what the appropriate travel speed is for a green band. Methods are used across jurisdictions.</td>
</tr>
<tr>
<td></td>
<td>Automated enforcement</td>
<td>Effective</td>
<td>Working with CHP to identify test cases.</td>
</tr>
<tr>
<td></td>
<td>Radar trailers/ speed Feedback signs</td>
<td>Effective, but degrades over time</td>
<td>Effectiveness degrades if not coupled with enforcement.</td>
</tr>
<tr>
<td></td>
<td>Variable speed limits</td>
<td>Future use</td>
<td>Not used much in United States, helpful for setting speeds corresponding to congestion and in speed transition zones.</td>
</tr>
<tr>
<td></td>
<td>Vehicle Infrastructure Integration (VII)</td>
<td>Future use</td>
<td>Use technology to exchange data from sensors in the road to have the vehicle automatically respond to conditions.</td>
</tr>
<tr>
<td></td>
<td>Speed Enforcement Corridors</td>
<td>Effective</td>
<td>Combined with other techniques, educate public that these corridors have enforcement for speeding and other violations.</td>
</tr>
<tr>
<td></td>
<td>Flashing beacons</td>
<td></td>
<td>Used on intersection approaches to slow traffic through the intersection.</td>
</tr>
<tr>
<td>Davey Warren, Federal Highway Administration</td>
<td>Roundabouts</td>
<td>Very Effective</td>
<td>Use in conjunction with a "roundabout corridor".</td>
</tr>
<tr>
<td></td>
<td>Visually narrowing road</td>
<td>Effective</td>
<td>Reduce number of lanes by adding medians, converting travel lanes to parking, etc.</td>
</tr>
<tr>
<td></td>
<td>Speed feedback signs</td>
<td>Effective but degrades over time</td>
<td>Only effective in the short-term.</td>
</tr>
<tr>
<td></td>
<td>Speed limit markings on pavement in red paint</td>
<td>Effective, but degrades over time</td>
<td>Used on rural arterials. Effective because of novelty. Shows decrease of up to 9 mph, but eventually degrades.</td>
</tr>
<tr>
<td>Expert</td>
<td>Speed Management Strategy/Measure</td>
<td>Opinion on Effectiveness</td>
<td>Notes</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>---</td>
<td>--------------------------</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>Variable speed limits</td>
<td>Future use</td>
<td>Used in Melbourne, Australia to set speed limits based on conditions.</td>
</tr>
<tr>
<td></td>
<td>Automated enforcement</td>
<td>Very Effective</td>
<td>Helps reinforce physical measures.</td>
</tr>
<tr>
<td></td>
<td>Deflection</td>
<td>Effective</td>
<td>Curb extensions with a center island or other techniques that require vehicles to move out of a straight path create "slow points".</td>
</tr>
<tr>
<td></td>
<td>Blank-out speed limit signs</td>
<td>Effective</td>
<td>Dark sign that displays speed limit if approaching vehicle is speeding. Sign displays speed limit and flashing "Slow Down" message.</td>
</tr>
<tr>
<td></td>
<td>Intelligent Speed Adaptation</td>
<td>Future Use</td>
<td>Governs speed of the car based on road conditions (part of VII).</td>
</tr>
<tr>
<td>Eugene Jud, Cal Poly San Luis Obispo</td>
<td>Medians, trees, islands, pedestrian bulbouts to visually and physically narrow streets</td>
<td>Very Effective</td>
<td>Used throughout the world to provide visual cues and make drivers uncomfortable if moving too fast.</td>
</tr>
<tr>
<td></td>
<td>Mountable cobblestone medians for visual narrowing</td>
<td>Effective</td>
<td>Allows emergency vehicles or left turning vehicles to drive on the median.</td>
</tr>
<tr>
<td></td>
<td>Roundabouts</td>
<td>Very Effective</td>
<td>Used in place of traffic signals to slow intersection speeds and avoid vehicle collisions. Expert's preferred method of speed management.</td>
</tr>
<tr>
<td></td>
<td>Speed Tables</td>
<td>Effective</td>
<td>Caltrans highly discourages speed tables on arterials. Used in France on arterials near schools with volumes up to 17,000.</td>
</tr>
<tr>
<td></td>
<td>Shared lanes</td>
<td>Effective</td>
<td>Street converted from 2-12' lanes to 1 lane with dedicated bicycle lanes. Cars must drive behind bicycles and pass when able. Not generally accepted in U.S. on arterials or collectors.</td>
</tr>
<tr>
<td></td>
<td>Narrow travel lanes</td>
<td>Effective</td>
<td>Lanes narrowed to 8 - 9'. Cars in both directions must pull over for emergency vehicles. Not generally accepted in U.S. on arterials or collectors.</td>
</tr>
</tbody>
</table>
Table 1. Summary of Interviews with Experts in Speed Management

<table>
<thead>
<tr>
<th>Expert</th>
<th>Speed Management Strategy/Measure</th>
<th>Opinion on Effectiveness</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Shared streets</td>
<td>Effective</td>
<td>Streets without striping or signage used to place all modes - bicycle, transit, pedestrian, personal vehicles on equal level of importance. Drivers must be attentive. Not generally accepted in U.S. on arterials or collectors.</td>
</tr>
</tbody>
</table>

6. Agency Interviews

Table 2 summarizes the experiences of public agencies throughout the United States. These agencies were identified as those who have implemented or explored speed management techniques. The table presents effectiveness information if available from the agency.

Table 2. Summary of Interviews with Public Agencies Implementing Speed Management Measures

<table>
<thead>
<tr>
<th>Agency</th>
<th>Speed Management Strategy/Measure</th>
<th>Speed Reduction Effectiveness</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>City of Oakland, CA</td>
<td>Speed feedback signs</td>
<td>12%(^{22})</td>
<td>6%(^{23})</td>
</tr>
<tr>
<td></td>
<td>Curb extensions at intersections</td>
<td>No Data</td>
<td>Intended effects of bulbouts is to decrease vehicle speed by the visual impression of a narrower road.</td>
</tr>
<tr>
<td></td>
<td>Safer crossings for pedestrians on arterial and collector streets</td>
<td>No Data</td>
<td>Striping crosswalks with high-visibility materials and patterns and installing the most updated MUTCD crosswalk signs and in-street “yield to pedestrian” signs (for school and mid-block locations).</td>
</tr>
<tr>
<td>Arlington County, VA</td>
<td>Restriped streets to add bicycle lanes, and narrow travel lanes</td>
<td>4.5 to 5 mph drop in 85th percentile(^{23})</td>
<td>Use 10’ inner and 11’ outer travel lanes, sometimes down to 9.5’ width on older arterials with constraints.</td>
</tr>
<tr>
<td></td>
<td>Curb extensions and transit stop "nubs"</td>
<td>No Data</td>
<td>Periodic measures less effective than continuous measures (such as lane narrowing).</td>
</tr>
<tr>
<td></td>
<td>Medians, edge lines, and parking to</td>
<td>No Data</td>
<td>Added on street parking wherever feasible (if supported by adjacent land use) to create</td>
</tr>
</tbody>
</table>

\(^{22}\) Effectiveness based on anecdotal information provided by City of Oakland staff.

\(^{23}\) Interview with Richard Best, Arlington County Transportation Commission Coordinator, July 25, 2008
Table 2. Summary of Interviews with Public Agencies Implementing Speed Management Measures

<table>
<thead>
<tr>
<th>Agency</th>
<th>Speed Management Strategy/Measure</th>
<th>Speed Reduction Effectiveness</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Initial</td>
<td>After 1 Year</td>
</tr>
<tr>
<td>Valley gutters</td>
<td>No Data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enforcement: target areas and blitz strategies</td>
<td>Limited Effect</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Citizen radar enforcement. Civic Association sends letters to speeders</td>
<td>Limited Effect</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Traffic circles and roundabouts</td>
<td>Effective No Data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Passive measures - education</td>
<td>Effective in long-term</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Speed actuated traffic signal</td>
<td>Limited effectiveness</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Traffic signal synchronization to speed limit</td>
<td>No Data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enforcement</td>
<td>No Data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caltrans (District 7)</td>
<td>Speed Enforcement Corridors and Public education</td>
<td>No Data</td>
<td></td>
</tr>
<tr>
<td>Safety Corridors, combination of enforcement, engineering and education</td>
<td>No Data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Automated speed enforcement (red light enforcement)</td>
<td>No Data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Speed feedback signs</td>
<td>No Data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variable speed limits combined with enforcement</td>
<td>No Data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>City of Mesa, AZ</td>
<td>Variable speed limits in school zones with flashing beacons</td>
<td>No Data</td>
<td></td>
</tr>
</tbody>
</table>
Table 2. Summary of Interviews with Public Agencies Implementing Speed Management Measures

<table>
<thead>
<tr>
<th>Agency</th>
<th>Speed Management Strategy/Measure</th>
<th>Speed Reduction Effectiveness</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>City of Pleasanton, CA</td>
<td>Speed feedback signs in combination with red light photo enforcement</td>
<td>Initial reduction in speed 4 mph reduction in 85th percentile speed</td>
<td>Installed on all approaches to photo enforced intersections and top ten accident locations (65 placements). Enforces speeding on green light through intersection as well as red light running. Good public acceptance.</td>
</tr>
<tr>
<td></td>
<td>Speed feedback signs with flashing red SLOW DOWN when 5 mph over speed limit</td>
<td>Initial reduction in speed Speed increases but less than before sign</td>
<td>More effective on residential streets than arterials. Flashing SLOW DOWN important, found that drivers ignored flashing speed only. On wider arterials placement of sign is important: placed in median close to faster lanes.</td>
</tr>
<tr>
<td></td>
<td>Street trees to visually narrow streets. Canopy over street intensifies tunnel effect</td>
<td>No Data</td>
<td>This measure built into street design standards and community values.</td>
</tr>
<tr>
<td></td>
<td>Road diets (4 to 3 lane conversion) on minor arterials with about 15,000 ADT</td>
<td>3+ mph reduction²⁴</td>
<td>Implemented diet with 10' wide travel lanes plus bicycle lanes and wide CTWLTL (15-16').</td>
</tr>
<tr>
<td></td>
<td>Lane narrowing</td>
<td>Effective. No Data.</td>
<td>Narrowed 12' lanes to 11' or sometimes 10'. Used striped median of double yellow lines 5' wide.</td>
</tr>
<tr>
<td></td>
<td>Traffic circle/roundabout, on arterial with 75' diameter and 10' mountable apron</td>
<td>Effective, but not preferred.</td>
<td>Expensive (landscaped about $200,000). Public complaints, confusion, false sense of excessive speeds by public, increase in noise, right-of-way confusion from unfamiliar drivers. Fire approved design. City considers other more cost-effective measures.</td>
</tr>
<tr>
<td></td>
<td>Speed actuated traffic signal in combination with speed feedback sign. Signal set to turn red when speeds 5-7 mph over limit</td>
<td>Effective in localized speed reduction.</td>
<td>Drivers tend to slow for signal and speed up afterward. Initially caused long queues when triggered, so City turned off speed actuation during peak periods. Detectors set back 500-600 feet to capture speeders without getting through yellow phase.</td>
</tr>
<tr>
<td>Portland, OR</td>
<td>Speed Tables/Speed Humps</td>
<td>4 - 10 mph drop in 85%. Up to 35% decrease in speeds²⁵</td>
<td>Very effective. City policy prohibits deflection techniques on emergency vehicle routes.</td>
</tr>
<tr>
<td></td>
<td>Medians, curb extensions, and lane reduction to physically narrow streets</td>
<td>No Data</td>
<td>Purpose is to increase pedestrian safety, speed reduction has been a secondary benefit.</td>
</tr>
<tr>
<td></td>
<td>Photo-enforcement</td>
<td>Effective - No data</td>
<td>Very effective technique. Can be coupled with physical measures or speed feedback signs.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

²⁵ Data provided by Richard Burchfield, City Traffic Engineer, Portland, OR. Final Project Evaluation – Traffic Calming Program, undated.
Table 2. Summary of Interviews with Public Agencies Implementing Speed Management Measures

<table>
<thead>
<tr>
<th>Agency</th>
<th>Speed Management Strategy/Measure</th>
<th>Speed Reduction Effectiveness</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Initial</td>
<td>After 1 Year</td>
</tr>
<tr>
<td>Mobile speed feedback signs</td>
<td>Very effective</td>
<td>No Data</td>
<td>Effectiveness degrades</td>
</tr>
<tr>
<td>Synchronized signals for a specific speed on 1-way streets</td>
<td>No data.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rumble Strips</td>
<td>Not recommended</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Riverside, CA</td>
<td>Radar Trailer Deployment</td>
<td>No data</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CMS Display Board</td>
<td>No data</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Targeted Enforcement</td>
<td>Effective</td>
<td>No data</td>
</tr>
<tr>
<td></td>
<td>Two-way turn lane, medians, angled parking to narrow roads</td>
<td>Very effective</td>
<td>No data</td>
</tr>
<tr>
<td></td>
<td>Permanent speed feedback signs</td>
<td>5-10 mph decrease, one downhill location reduced speeds almost 20 mph²⁶</td>
<td></td>
</tr>
<tr>
<td>Chandler, AZ</td>
<td>Speed Feedback Signs</td>
<td>8-10 mph decrease in 85%²⁷</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Synchronized signals for a specific speed</td>
<td>No data</td>
<td></td>
</tr>
</tbody>
</table>

²⁶ Interview with Steve Libring, City Traffic Engineer, Riverside, CA, October 9, 2008
Table 2. Summary of Interviews with Public Agencies Implementing Speed Management Measures

<table>
<thead>
<tr>
<th>Agency</th>
<th>Speed Management Strategy/Measure</th>
<th>Speed Reduction Effectiveness</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Initial</td>
<td>After 1 Year</td>
</tr>
<tr>
<td>City of El Cerrito, CA</td>
<td>Speed platforms</td>
<td>One location reduced 85th speed from over 30 to 20 mph(^{28}). Plan before and after studies for future installations.</td>
<td>Implementing on major collector streets and one major arterial, after conferring with police and fire departments. An existing platform installed on major collector (city's highest accident location) reduced 85th percentile from 30 mph to 20 mph. Implemented for pedestrian safety rather than speeding problems. Combining with curb bulb-outs.</td>
</tr>
<tr>
<td></td>
<td>Speed Feedback Signs</td>
<td>No Data</td>
<td>Appeared effective, but installed at same time as new traffic signal so not sure which measure was most effective. Not planning on future installations because public feels they are visually intrusive. Have been using radar trailer for years - found to be effective and supported by public.</td>
</tr>
<tr>
<td></td>
<td>Curb bulbouts</td>
<td>No Data</td>
<td>Using on major arterial streets primarily for pedestrian safety.</td>
</tr>
<tr>
<td>San Francisco Municipal Transportati on Agency</td>
<td>Road diets</td>
<td>Data Still Being Collected Has been effective</td>
<td>Implemented nearly 30 road diets. Sometimes to slow traffic, other times to create space for bike and/or pedestrian projects, and sometimes for all three.</td>
</tr>
</tbody>
</table>

\(^{28}\) Effectiveness citation based on interview with City staff.
Appendix A – References
The following annotated bibliography shows specific speed management techniques in **bold** to draw the reader’s attention to the extent each technique is discussed in the literature review.

2008 California Vehicle Code section 22358.5
This section of the vehicle code discusses how a speed limit is determined.

“Achieving a Multimodal Vision: Arterial Transportation Management in Arlington County, Virginia” by Richard Best and R. John Martin
This paper summarizes Arlington County’s Arterial Management Study in which street classifications and future traffic volumes were used to develop street typology overlays and an arterial transportation management (ATM) toolbox. The study also developed recommendations for specific measures on eleven corridors in the county. ATM measures discussed include **radar speed trailers**, **traffic signal timing**, **reduction in lane width**, **medians**, **edge treatments**, and **striping**.

This presentation summarizes the positive impact that roundabouts have had for businesses in Golden, Colorado. The businesses opposed the use of roundabouts in place of traffic signals because of the perceived negative impact it would have on businesses. Before and after studies show the businesses had increased sales after the roundabouts were installed.

“Arterial Speed Calming – Mohawk Road Case Study” TRB Circular, EC019 Urban Street Symposium 2000, Gerry Forbes, Synectics Transportation Consultants.
This paper uses Mohawk Road as a case study for arterial traffic management. Mohawk Road is a two-lane arterial with a 50km/hr speed limit and with 85th percentile speeds of up to 70 km/hr. The general public wanted to decrease speeds along the route. Suggested techniques included **traffic control**, **speed humps**, and **speed control medians**. The public chose to implement speed control medians, wide medians with landscaping used to decrease road width and provide a visual change in the environment. The medians helped to decrease mean speed by 9% and a 20% reduction in the number of drivers exceeding the speed limit.

This article describes the traffic calming implemented on two four lane arterial roadways. Both arterials were converted to three lane roadways with a two way center turn lane. This form of a **road diet** resulted in a slight decrease in average and 85th percentile speeds (2 mph) and a decrease in capacity and incidents.

This report is a summary of Portland’s Arterial Traffic Calming Program including the procedures for selecting a project and the tools that can be used for traffic calming. The program uses a combination of education, enforcement, and engineering. The engineering tools allowed includes **gateways**, **speed humps**, **curb extensions**, **raised crosswalks**, **medians**, and **textured pavements**.
“Arterial Traffic Calming – is it an oxymoron?” by James West for Institute of Transportation Engineers
This paper examines the need for traffic calming and the need for emergency vehicle access on arterials. A split hump was successfully used in Portland to slow traffic, but not significantly impede emergency vehicles. Eugene, Oregon used curb extensions, textured pavements, and street trees to slow a collector to 20 mph. Gateways, landscaped medians, and curb extensions were used to calm traffic on state highways. This paper does not provide quantitative effectiveness studies of the treatments.

“Calming New York City Intersections”. Michael R. King, former Director of Traffic Calming, NYC Department of Transportation. TRB Circular E-C019: Urban Street Symposium.
This paper discusses traffic calming in New York City to benefit pedestrians and decrease pedestrian and vehicle incidents. Options discussed include signal retiming to provide a leading pedestrian interval and curb extensions. Curb extensions provided inconclusive results for pedestrian safety. This paper did not address changes in speed caused by the treatment.

This paper addresses the desire to balance the needs of all road users (vehicles, pedestrians, and cyclists) on Creyke Road in New Zealand. Creyke Road carries 14,000 vehicles per day and approximately 900 cyclists per day. The arterial management techniques used include a road diet, medians, landscaping, and textured pavements. An “after” study was not completed.

“Determining Effective Roadway Design Treatments for Transitioning from Rural Areas to Urban Areas on State Highways” Oregon Department of Transportation and Federal Highway Administration. 2008.
The report uses a simulation to evaluate using traffic calming measures in transition zones from rural to urban areas. Traffic calming techniques discussed include landscaping, gateways, medians, curb extensions, road diets, roundabouts, raised intersections, speed cushions, traffic control, striping, and crosswalks. Landscaping, gateways, and medians were used in a simulation model to determine their effectiveness. Gateways used with medians were the most effective speed reducing technique according to the simulator results.

This paper documents the short-term and long-term effectiveness of speed monitoring displays in school zones. In the short-term, average speeds were reduced by 17.5%. In the long-term, the average speed was reduced by 12.4%.

This report analyzes the impact of the street environment in low-speed arterials on speed. It uses probe data from Atlanta and simulation models for analysis. Number of roadside features, intersection density, grade changes, and medians were the variables in the study. Medians and intersection density had minimal impact on
speed. The presence of raised curb, dense land use conditions and frequent driveways, in combination, reduce operating speeds and flat curves with long site distance increases operating speeds.

“Evaluation of Gateway and Low-Cost Traffic Calming Treatments for Major Routes in Small Rural Communities” by Shauna Hallmark, Neal Hawkins. Center for Transportation Research and Education, Iowa State. 2007. This report analyzes the impact of traffic calming treatments on highways through rural towns in Iowa. It includes a literature review of effective traffic calming treatments in rural areas including curb extensions, rumble strips, chicanes, landscaping, medians, gateways, striping, textured pavements, road diets, roundabouts, and speed humps. The low cost treatments used include gateways, speed tables, speed feedback signs, textured pavement, and striping. Speed feedback signs and speed tables were found to be effective, medians and gateways treatments produced mixed results.

“Final Regulations” Traffic Calming Design Manual. Delaware Department of Transportation Division of Planning and Policy. 2000. This manual provides guidance for planning, design, and implementing traffic calming in Delaware and is a supplement to the state’s Road Design Manual. It describes the process for selecting projects (both proactive and reactive implementations). The toolbox of techniques includes diverters, medians, speed humps, raised intersections, roundabouts, chicanes, and curb extensions. Each technique is described qualitatively and speed and volumes impacts for most methods are given. The manual also provides design details for the techniques and recommendations as to which technique is suitable for each roadway classification.

“Flexible Design of New Jersey’s Main Streets” by Reid Ewing and Michael King. New Jersey of the Voorhees Transportation Policy Institute - Edward J. Bloustein School of Planning & Public Policy Rutgers, The State University of New Jersey for the New Jersey Department of Transportation. This manual provides recommendations for reclassifying and designing roads to be context sensitive. The following context sensitive design features were discussed – medians, striping, curb extensions, and turning radius. Case studies throughout the United States were used to explain the concept of flexible design. One case study uses lateral shifts to slow traffic.

“Guidelines for Selection of Speed Reduction Treatments at High-Speed Intersections” National Cooperative Highway Research Program Report 613. 2008. This report provides guidelines for selecting speed reduction treatments and describes the types of treatments, their design, and their impact on speed and safety. Treatments described include warning signs, striping, rumble strips, roundabouts, medians, speed tables, and road diets.

“Guidelines on Traffic Calming for Towns and Villages on National Routes” National Roads Authority. 2005. This report provides guidance on how to implement traffic calming techniques on roads in Ireland. It includes planning and legal considerations and techniques appropriate for both transition and urban roads. The techniques discussed includes gateways, landscaping, signage, striping, medians, and curb extensions. This report also includes landscape guidelines and construction specifications of
techniques. It focuses mainly on specifications and design requirements. It does not include any measures of effectiveness.

“A Green Light for Common Sense: to Slow Drivers, German town drops traffic signals and lane markers” Craig Whitlock, Washington Post Foreign Service, December 24, 2007. The town of Bohmte, Germany decided to address their traffic problem by turning their streets into shared space. They have removed striping, curbs, and traffic control in an effort to give cars, pedestrians, and bicycles equal access and priority. The public opinion has been mixed.

“How Handbook of Speed Management Techniques” By Angelia Parham and Kay Fitzpatrick, Texas Transportation Institute, September 1998. This report provides basic information on a variety of speed management techniques including their applicability, effectiveness, and case studies for each. The techniques are divided in four sections – roadway design, roadway surface, traffic control, and enforcement. The design techniques include chicanes, neckdowns, road diets, diverters, gateways, and roundabouts. The surface techniques include speed humps, speed tables, crosswalks, striping, and rumble strips. The traffic control techniques include speed limit signs, stop signs, flashing beacons, and school zones. Enforcement techniques include citizen watch, auto-enforcement, and speed trailers. The amount and type of data available for each technique varies, but all list the pros and cons of each and for what types of roads they are appropriate.

“How to Design Streets that Don’t Invite Speeding” by Andrew J. Ballard, P.E., P.T.O.E. ITE 2002 Annual Meeting. 2002. This paper documents San Antonio’s residential street design program where the streets are designed to prevent speeding. Streets must limit the length of unimpeded street length. If the unimpeded street length exceeds the limit, traffic circles, medians, speed humps, and t-intersections can be used. There is no measure of effectiveness for these techniques.

“Impacts of Traffic Calming” TRB Circular – E-C019 Urban Street Symposium 2000, Reid Ewing. This paper documents the quantifiable impacts of traffic calming measures including speed humps, speed tables, raised intersections, narrowings, slow points, and diverters. The studies were primarily conducted on lower volume local streets with speeds around 25 mph.

“Improving Pedestrian Safety at Unsignalized Crossings” Transit Cooperative Research Program, National Cooperative Highway Research Program Repo562. Sponsored by the FTA. 2006. This report summarizes the characteristics of pedestrian activity and different pedestrian crossing treatments and analyzes their effectiveness using field studies. The pedestrian crossing treatments discussed include traffic signals, flashing beacons, roadway lights, striping, and crosswalks.

This paper uses a case study to evaluate the effectiveness on speed humps on residential streets. **Speed humps** reduced 85th percentile speeds by 22 to 29 percent.

“Pedestrian Safety Impacts of Curb Extensions: A Case Study” by Randal S. Johnson for Oregon Department of Transportation and Federal Highway Administration. 2005. This report documents the time it takes for a vehicle to yield to a pedestrian at a curb extension. It also documents the change in speed after a **curb extension** was installed.

“Road Safety Engineering: Evaluation of Traffic Calming Schemes Constructed on National Roads 1993-1996” by F. Crowley and A. MacDermott. This report gives a qualitative assessment on the traffic calming program in Ireland using speed, incidents, and costs as measures of effectiveness. Traffic calming techniques evaluated include **gateways, road diets, signage, striping, and medians**. Gateways and signage produced statistically significant speed reductions.

“Sacramento County Neighborhood Traffic Management Program (NTMP) – Best Practices White Paper”, Fehr & Peers Associates, Inc., June, 2004. This paper documents the best practices of agencies that have started traffic management programs in terms of the organization of the program, legal issues, and how the planning process works. The paper also gives examples of programs that have implemented arterial traffic calming.

“A Short History of Physical Speed Reduction Measures in European Urban Areas” by Nicole Muhlrad for National Research Institute for Transportation and Safety. This paper documents the evolution of street design and street users from vehicles to bicycles and pedestrians. It discusses arterial traffic calming programs throughout Europe from a planning perspective. Many of the techniques discussed were high risk because they had not been used before and required more collaborative planning. The techniques used in Europe are **chicanes, roundabouts, striping, textured pavements, and landscaping**.

“Speed Management” by Organisation for Economic Co-Operation and Development. European Conference of Ministers of Transport. 2006. This report documents issues associated with speeding and international policies for reducing speeding. The focus is on self-explaining roads as a means to signal to drivers the appropriate speed based on the classification and function of the road. Speed management techniques discussed include **gateways, medians, road diets, roundabouts, variable speed limits and speed humps**. The report gives qualitative and limited quantitative analysis on their speed management and safety impacts. It also discusses how speed limits are set and the perception of signage and striping on speed and speed limits. State of the art techniques for managing speed involve in-vehicle technology to monitor and regulate speed. The use of enforcement, both automated and responsive, is a major policy recommendation to manage speed. The report gives a summary of policy recommendations for education, enforcement, infrastructure, speed limits, and technology for speed management.

This report was created as a “how to” manual for speed management to address implementing, funding, and enforcing a speed management program. It covers assessing the situation, developing and managing a program, and evaluating safety. Examples of speed management, setting speed limits, safety improvements, and enforcement are given throughout the text as best practices. Raised intersections, speed humps, rumble strips, roundabouts, and road diets are examples of speed management techniques that are discussed quantitatively. The effectiveness of many of the techniques are discussed using case study data where available.

“Speed Management Strategic Initiative” USDOT and NHTSA, Sept. 2005. This report discusses the goals and objectives of the initiative to reduce speed-related incidents by describing the federal government’s role in collecting information on speeding while regulation is left to state and local governments. The report outlines specific objectives and actions for the initiative to collect data and evaluate the relationship between speed, speed limits, and incidents.

“Speed Management Techniques for Collectors and Arterials” TRB Circular, E-C019 Urban Street Symposium 2000, Angelia Parham and Kay Fitzpatrick, Texas Transportation Institute. This paper explains the process of developing the “Handbook of Speed Management Techniques” and the speed management techniques most frequently used on collectors and arterials. The most common method of speed control on collectors and arterials is increased enforcement, speed limit signing and enforcement, flashing beacons, speed trailers, and rumble strips. The assessment of each technique is primarily qualitative.

“Speed Management in Urban Areas” Nordic Road and Transport Research. No 2 1999 – DUMAS – Developing Urban Management and Safety. The report presents guidelines for planning, implementing and evaluating speed management programs in urban areas. Subjects include collecting and mapping data, setting targets or goals of the program, developing and designing a plan, public involvement, and evaluation of the program. The report lists a menu of speed management techniques without any evaluation or detail on each. The speed management techniques include road diets, surface treatments, gateways, roundabouts, and chicanes.

“Speed Table Installation Update” City of Oakland Park, Florida - City Commission Agenda Item Report. 2008. This paper concludes that the addition of four speed tables effectively reduced speeds in the area and no further tables were needed. The speed tables reduced the 85 percentile speed by 4.5 mph. Financial impact and specifications are included in the report.

“Traffic Calming Design Standards for New Residential Streets: A Proactive Approach” by Joseph E. Womble, P.E. and W. Martin Bretherton Jr., P.E. ITE Journal. 2003. This article discusses the issue of residential speeding in Gwinnett County, GA, near Atlanta. It discusses early traffic calming efforts such as a neighborhood speed watch program and retrofitting speed humps. Developers are now required to include in their plans for future developments various techniques to reduce
speeding such as **tangent lengths, traffic circles, medians and speed humps**. The purpose of the program is to keep the 85th percentile speeds between 25 and 30 mph.

www.trafficcalming.org, accessed on September 5, 2008. Sponsored by Fehr and Peers Transportation Consultants. The website gives the definition and history of traffic calming, and discusses the advantages, disadvantages, and effectiveness of specific techniques. The effectiveness of specific measures on reducing 85th percentile speed is shown. The measures shown are **speed tables, raised intersections, roundabouts, chicanes, chokers, curb extensions, diverters, and medians**.

“Traffic Calming of State Highways: Application New England” by Per Garder of University of Maine, and John N. Ivan, and Jianhe Du of University of Connecticut. 2002. This report evaluates the safety and acceptance of traffic calming measures. The public is resistant to traffic calming measures on major arterials. The report gives a history of traffic calming in Europe and the United States and the advantages and disadvantages of **speed tables, medians, roundabouts, chicanes, signalization, and rumble strips**. The report concludes the general public accepts narrowed roads and horizontal realignment better than speed humps and other vertical devices, and the public is in favor of speed enforcement, as long as it’s not applied to them.

“Traffic Calming on Arterial Roadways” by Michael Skene, on ITE’s website. “Traffic Calming Benefits, Costs, and Equity Impacts” By Todd Litman, *Victoria Transport Policy Institute* December 1999. The article examines various definitions of traffic calming and ties traffic calming to safety benefits. It gives examples of traffic calming used on arterials. In the first example, the number of lanes on a roadway were reduced in an attempt to make the corridor safer. The second example uses gateways and other designs to achieve calming. It provides quantitative analysis of the speed and safety benefits of each case study.

“Traffic Calming on Main Roads Through Rural Communities” U.S. Department of Transportation Federal Highway Administration. FHWA Publication No. FHWA-HRT-08-067. This report summarizes the effects of various low cost traffic calming techniques based on a study of main rural highways in Iowa. It outlines the study methodology, listing several options of calming techniques, and measures their costs and effectiveness. Techniques mentioned are **striping, speed tables, speed feedback signs, and lane narrowing**. Before and after studies were conducted for up to a year after implementation with missed results.

“Traffic Control Devices Pooled Fund Study – Pavement Markings for Speed Reduction” by Bryan Katz, Turner Fairbank Highway Research Center, December 2004. This report analyzes inexpensive pavement marking treatment to determine the effectiveness of reducing speeds at three different locations. It reviews and assesses **appropriate signage for roundabouts, colors used to distinguish tollbooth lanes, symbol used on signs, flashing beacons at unsignalized**
pedestrian crossings, and pedestrian countdowns vs. flashing “don’t walk” signals. Overall, speeds decreased after the pavement markings were implemented.

“Types of Traffic Calming Methods” City of Santa Clarita; http://www.santa-clarita.com/cityhall/pw/traffic/TrafficCalming.pdf accessed on May 5, 2009. This paper documents different traffic calming techniques and their advantages, disadvantages, cost, and effectiveness. Speed humps, speed tables, raised crosswalks, raised intersections, chicanes, chokers, curb extensions, medians, and diverters are described as possible traffic calming techniques.

“Variable Speed Limits”, Speed Management Workshop, Dallas, TX. March 2000. Powerpoint presentation by Warren Davies. This Powerpoint presentation discusses the background, objectives, and effects of variable speed limits using both foreign and domestic examples. Variable speed limits are used to handle various situations such as road hazards, traffic, and weather conditions. The technology includes fiber optic technology, radar, and cameras.

“West Palm Beach Traffic Calming – the Second Generation” TRB Circular – E-C019 Urban Street Symposium 2000, Timothy Stillings, Ian Lockwood, City of West Palm Beach. West Palm Beach’s multifaceted approach of traffic calming has helped to revitalize the downtown area. The report outlines the effects of changes in driving habits, pedestrian safety, aesthetics, and economic development as a result of traffic calming. Traffic calming techniques used include road diets, landscape, and raised intersections. The paper also documents the changes to the city’s traffic calming policy over time to expand beyond residential streets.
Appendix B – Interviews

Interviews were completed with the following experts in speed management and agency representatives who have implemented speed management techniques. Additionally, some responses were obtained via an email survey released by the East Bay Traffic Engineers group in Northern California. An email survey was also distributed to the Orange County Traffic Engineering Council and to City Traffic Engineers (CTE).

Public Agency Interviews
- Frank Quon, Caltrans District 7, Los Angeles, California. Deputy District Director of Operations.
- Yvetteh Ortiz, City of El Cerrito, California. Engineering Manager.
- Joshua Pack, City of Pleasanton, California. Traffic Engineer.
- Michael Mah, City of Mesa, Arizona.
- Robert Burchfield, City of Portland, Oregon. City Traffic Engineer
- Steve Libring, City of Riverside, California. City Traffic Engineer

Public Agencies Responding to Email Survey
- Joe Wang, City of Oakland. Senior Transportation Engineer.
- Mike Sallaberry, San Francisco Municipal Transportation Agency.

Expert Interviews
- Eugene Jud, Professor of Civil Engineering, California Polytechnic State University, San Luis Obispo
- Davey Warren, Federal Highway Administration, Office of Research, Speed Research Program.
- Kay Fitzpatrick, Texas Transportation Institute, Texas A&M University. Research Professor.
- Reid Ewing, University of Maryland. Author of Institute of Transportation Engineers' “Traffic Calming: State of the Practice”.
- Frank Quon, Caltrans District 7, Los Angeles, California. Deputy District Director of Operations.
Appendix C – Interview Questions

Questions for Experts

1. What is your background on speed management for arterials?

2. In your opinion, what techniques have proven empirically to be the most successful in terms of speed reduction on arterials?

3. What do you consider the most effective combination of arterial speed management techniques?

4. What techniques have proven effective on residential streets, but are not as effective on arterials?

5. Are there any threshold speeds or ADTs for speed management? Do some techniques work better under or over a specific speed?

6. What are the state of the art techniques that you are researching now?

7. Do you have any documented case study information on arterial speed management or can you recommend any resources?

8. Do you know of any cities in California that use arterial speed management techniques?

9. Follow-up with questions about specific techniques.

Questions for Public Agencies

1. Have you implemented speed management techniques on arterials?

2. What caused you to investigate speed management for arterials?

3. What were the before speeds and/or ADTs on the roads you were considering as candidates for management?

4. What techniques did you consider? Which ones have you implemented?
 a. Physical devices
 b. Passive or advisory devices

5. What techniques did you consider but reject?

6. What resources or case studies did you use when you were considering arterial speed management?

7. Do you have before or after data for the arterials with speed management techniques?
8. Do the techniques that you have implemented perform as you expected?

9. What input did the public have in the measures used? What has been the public’s reaction to the measures?

10. What would you do differently next time either with the planning or implementation of the speed management techniques? What would you do the same?